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We study best uniform approximation of periodic functions from

{|
2?

0

K(x, y) h( y) dy : |h( y)|�1= ,

where the kernel K(x, y) is strictly cyclic variation diminishing, and related
problems including periodic generalized perfect splines. For various approximation
problems of this type, we show the uniqueness of the best approximation and
characterize the best approximation by extremal properties of the error function.
The results are proved by using a characterization of best approximants from quasi-
Chebyshev spaces and certain perturbation results. � 1997 Academic Press

1. INTRODUCTION

This paper is about some approximation problems related to cyclic
variation diminishing (CVD) kernels. CVD kernels are the periodic
analogues of totally positive (TP) kernels. CVD kernels were introduced
and discussed in two papers by Schoenberg and coauthors [5, 8] in 1958
and 1959. A more comprehensive consideration is to be found in the book
of Karlin [4, Chaps. 5 and 9]. We first define the relevant concepts. We
will later return to a general discussion of CVD kernels.

article no. AT963059

380
0021-9045�97 �25.00
Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.



File: 640J 305902 . By:DS . Date:23:05:97 . Time:09:38 LOP8M. V8.0. Page 01:01
Codes: 3164 Signs: 2449 . Length: 45 pic 0 pts, 190 mm

In what follows C� will denote the set of continuous 2?-periodic functions
defined on all R. (The period 2? is chosen for no particular reason.) By C� 2

we mean the two-variable functions (kernels) defined on all of R2 which are
continuous and 2?-periodic in each variable.

Definition 1.1. Let K # C� 2. We say that K is a cyclic variation
diminishing kernel of order 2m&1 (CVD2m&1) if there exist =n # [&1, 1],
n=1, ..., m, such that

=nK \ x1 , ..., x2n&1

y1 , ..., y2n&1+==n det[K(xi , yj)]2n&1
i, j=1�0 (1.1)

for all x1< } } } <x2n&1<x1+2? and y1< } } } <y2n&1<y1+2?. We say
that the kernel K is strictly cyclic variation diminishing of order 2m&1
(SCVD2m&1) if strict inequality always holds in (1.1). The kernel K is said
to be extended cyclic variation diminishing of order 2m&1 (ECVD2m&1) if
K is 2m&1 times continuously differentiable, and the above determinants
are strictly positive for all choices of x1� } } } �x2n&1<x1+2? and
y1� } } } �y2n&1<y1+2?, where in case of equal xi (or yj) we replace the
corresponding rows (columns) by successive derivatives.

We will drop the subscript 2m&1 from the acronyms CVD, SCVD, or
ECVD if we assume that these properties hold for all orders.

Note that the only determinantal conditions imposed are those on the
odd-order minors. This ``restriction'' is a consequence of the periodicity
(and a simple rotation of columns or rows). That is, we always have

K \ x1 , x2 , ..., x2n

y1 , y2 , ..., y2n +=&K \x1 ,x2 , ..., x2n

y2 , ..., y2n , y1+ ,

and the ``correct'' ordering has been maintained. (This is essentially equiv-
alent to the fact that periodic functions have an even number of sign
changes (or zeros if the count is done correctly).) Thus (1.1) cannot
possibly hold for even-order minors (except in the uninteresting case where
the associated determinants are all identically zero). This restriction is a
serious drawback and generally weakens the theory. In the standard non-
periodic TP case a determinantal inequality of the form (1.1) holds for all
orders, and this results in a ``stronger'' theory. The periodicity is, in a
certain sense, a partial compensation.

Essentially equivalent to the CVD, SCVD, and ECVD properties are cer-
tain variation diminishing properties; see Karlin [4, Chap. 5, Theorem 6.1].
To explain, let Sc( f ) denote the number of sign changes of f # C� on a
period. Z� c( f ) will count the number of zeros of f where nodal zeros (sign
changes) are counted once, and nonnodal zeros (zeros which are not sign
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changes) twice. Zc*( f ) will, for f sufficiently smooth, denote the number of
distinct zeros of f, counting multiplicities. For a vector c=(c1 , ..., ck), we
let Sc(c) denote the number of (weak) periodic sign changes in the vector
c. By this we mean the number of sign changes in any of the sequences

cj , ..., ck , c1 , ..., cj ,

where cj{0, and zero components are discarded. Note that all these values
are even numbers (or infinite). We also need the number of sign changes
of a 2?-periodic Borel measure +. We say that such a measure has 2n
relevant sign changes, denoted by Sc(+)=2n, if there exist disjoint sets
A1< } } } <A2n<A1+2?, with �2n

i=1 Ai=[a, a+2?) (some a), such that
(&1) i + is a nonnegative measure on Ai and +(Ai){0, i=1, ..., 2n. If h is
a summable 2?-periodic function, then by Sc(h) we mean Sc(+), where
d+( y)=h( y) dy.

An essentially equivalent definition to the CVD property of the kernel K
is that

Sc( g)�Sc(+)

for all + as above, where

g(x)=|
2?

0
K(x, y) d+( y).

And similarly, K is SCVD if and only if (up to some minor details)

Z� c( g)�Sc(+)

for all + and g as above. Finally, K is ECVD if and only if (up to those
minor details again)

Zc*( g)�Sc(+)

for all + as above, and g sufficiently smooth.
The original two papers which dealt with CVD kernels were [8]

by Po� lya and Schoenberg and [5] by Mairhuber, Schoenberg and
Williamson. Schoenberg had, over the years, developed a theory of totally
positive kernels, especially totally positive difference kernels (called Po� lya
frequency functions). The two papers [5, 8] were the first to consider the
periodic versions thereof. As we have already remarked, the even-order
minors cannot possibly be of one strict sign and this complicates the
theory. (The theory is even today not nearly as complete as the theory of
Po� lya frequency functions.)
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In the first paper [8], Po� lya and Schoenberg studied the de la Valle� e
Poussin means. Let

|m(t)=
1

( 2m
m )

:
m

&=&m \
2m

m+&+ ei&t.

The transformation

Vm(x)=
1

2? |
2?

0
|m(x&y) f ( y) dy

defines the de la Valle� e Poussing means (or V-means) of f. Vm is a tri-
gonometric polynomial of degree at most m, and for every f # C� the Vm

uniformly converge to f as m � �. The main result of [8] is that the dif-
ference kernel |m(x&y) is SCVD2m+1 . (We will use the fact, see Karlin
[4, Chap. 9, Corollary 3.1], that |m(x&y) is ECVD2m+1.)

In the second paper [5], a more general theory was pursued with regard
to CVD difference kernels, i.e., kernels K # C� 2 which are CVD and of the
form K(x, y)=k(x&y) for some k # C� .

The results of both papers, along with numerous generalizations, may be
found in Chaps. 5 and 9 of Karlin [4]. In Chap. 9 is studied the many
properties of CVD difference kernels. For example, it is shown that if
k(x&y) is SCVD2m+1 and k # C� (4m), then k(x&y) is in fact ECVD2m+1

(see Karlin [4, Chap. 9, Theorem 9.1]). Another result concerning dif-
ference kernels which are CVD is that the =n in (1.1) are necessarily all
equal (see [5, p. 258] or [4, Chap. 5, Theorem 7.1]).

This present paper is, to a large degree, a continuation and extension of
[6] to the periodic case. Motivated by work of Sattes [10], the second
author considered in [6] approximations (in the uniform norm) to
f # C[0, 1] by functions of the form

g(x)=|
1

0
K(x, y) h( y) dy,

where |h( y)|�1 and K is strictly totally positive (STP). In addition,
numerous related problems were considered such as best approximating by
generalized perfect splines with at most n knots, and best approximation
from

|
1

0
K(x, y) d+( y),

where d+ is a nonnegative measure. The results obtained (uniqueness and
characterization) were somewhat surprising, considering the fact that the
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approximating subspace is not finite dimensional (or finite parameter). The
results also depended, rather crucially, on an ``orientation.'' It was unclear
how one might generalize these results to the periodic case, where there
seemed to be no natural ``orientation.'' In [2] the first author, using his
results from [1], was able to generalize the main result in [6] to the
periodic case. In this paper we review this work (Section 3) and then go on
to consider various related problems.

To be more precise, in Section 3 we characterize and prove uniqueness
of the best approximation to f # C� from

M={|
2?

0
K(x, y) h( y) dy : |h( y)|�1 a.e., y # [0, 2?]= ,

under the assumption that K is SCVD. If f � M, then this unique best
approximation is necessarily of the form

:
2n

j=1

(&1) j+1 |
!j+1

!j

K(x, y) dy,

for some integer n and some !1< } } } <!2n<!2n+1=!1+2?. We call such
functions periodic generalized perfect splines with 2n knots. It also exhibits
additional properties (see Theorem 3.2).

In Section 4 we restrict our approximating set to a subset of periodic
generalized perfect splines with exactly 2n knots, where both n and one of
the knots is fixed. We characterize and prove the uniqueness of the best
approximation to f # C� "M (Theorem 4.1).

We continue this investigation in Section 5, where we consider approx-
imation from the set of periodic generalized splines with exactly 2n knots
(but none fixed, Proposition 5.1), and a related problem (Theorem 5.2).
Finally, in Section 6, our approximation set is

M�={|
2?

0
K(x, y) d+( y) : +�0= .

We prove analogues of some of the results of Sections 3, 4, and 5.

2. PRELIMINARIES

In this section we present various results which will be needed and used
in the subsequent analysis. Some of these results may be found in Davydov
[1]. However, since that paper is contained in a proceedings in Russian
which is probably inaccessible to many readers, we will also present these
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results with proofs. For variety, the proofs will be somewhat different than
those in [1].

An m-dimensional subspace U of continuous functions defined on an
interval I is said to be a Chebyshev (T-) space (or Haar space) if no non-
trivial function vanishes at more than m&1 distinct points in I. If u1 , ..., um

is any basis for this space, then it is called a T-system. (The terms ``space''
and ``system'' are often used interchangeably.) An equivalent definition of
a T-system is that

U \ 1, ..., m
x1 , ..., xm+=det[ui (xj)]m

i, j=1{0

for every choice of distinct x1 , ..., xm in I.
T-spaces have many distinctive properties. One of the more familiar is

the characterization (and the uniqueness) of the best approximation to
continuous functions in the uniform norm from T-spaces. Since we will deal
with 2?-periodic functions, we formulate the result in this setting. We note,
for the same reasons as stated in the Introduction, that a T-space in C� is
necessarily of odd dimension.

Theorem 2.1. Let U2m+1/C� be a T-space of dimension 2m+1. Let
f # C� "U2m+1 . Then there exists a unique best approximation u* to f from
U2m+1. u* is characterized by the fact that there exist 2m+2 points
x1< } } } <x2m+2<x1+2? and a $ # [&1, 1] such that

$(&1) i ( f&u*)(xi)=& f&u*&, i=1, ..., 2m+2.

We will generally simply say that f&u* equioscillates on 2m+2 points.
If K is an SCVD kernel, then for every choice of y1< } } } <y2m+1<

y1+2? (resp., x1< } } } <x2m+1<x1+2?), the set of functions K(x, y1), ...,
K(x, y2m+1) (resp., K(x1 , y), ..., K(x2m+1 , y)) spans a T-space of dimension
2m+1. Moreover it will also be necessary that we deal with 2m sections of
the kernel K, which cannot possibly be a T-system. To this end we present
the following definition and result.

Definition 2.1. Let U2m be a 2m-dimensional subspace of C� . We say
that U2m is a quasi-Chebyshev (QT-) space if U2m contains a (2m&1)-
dimensional T-space and is contained in a (2m+1)-dimensional T-space.

Following previous notation, any basis for a QT-space will be called a QT-
system. The next result characterizes best approximations from QT-spaces.
Note that there is no claim of uniqueness of the best approximation.
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Theorem 2.2 (Davydov [1]). Let U2m/C� be a QT-space of dimension
2m. Let f # C� "U2m . Then u* # U2m is a best approximation to f from U2m if
and only if there exist 2m points w1< } } } <w2m<w1+2?, a $ # [&1, 1],
and additional points w$2m , w"2m satisfying

w2m&1<w$2m�w2m�w"2m<w1+2?

such that

(a) dim U2m | [w1 , ..., w2m]<2m

(b) $(&1) i ( f&u*)(wi)=& f&u*&, i=1, ..., 2m&1

$( f&u*)(w$2m)=$( f&u*)(w"2m)=& f&u*&.

We do allow for the possibility that w$2m=w2m=w"2m .

Proof. (O) Assume that u* # U2m is a best approximation to f from
U2m . It is known (see, e.g., Rivlin [9, p. 63]) that there exist k distinct
points, 1�k�2m+1,

x1< } } } <xk<x1+2?

and real numbers cj{0, j=1, ..., k, such that

(i) :
k

j=1

cju(xj)=0, all u # U2m

(ii) (sgn cj)( f&u*)(xj)=& f&u*&, j=1, ..., k.

Since U2m contains a T-space of dimension 2m&1, it follows that

Sc(c1 , ..., ck)�2m

and thus k # [2m, 2m+1]. As a further consequence dim U | [x1 , ..., xk]�
2m&1. We consider two cases.

(1) dim U | [x1 , ..., xk]=2m. In this case we must have (from (i)) that
k=2m+1. The value Sc(c1 , ..., c2m+1) is an even number. As such it must
equal 2m, and cjcj+1<0, j=1, ..., 2m+1 (c2m+2=c1), for all but one j.
Assume without loss of generality that c2m c2m+1>0. Let u1 , ..., u2m by any
basis for U2m . Solving for cj (from (i)), we see that we must have

U \ 1, ..., 2m
x1 , ..., x2m&1 , x2m+ U \ 1, ..., 2m

x1 , ..., x2m&1 , x2m+1+<0.
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Thus for some x2m<x~ 2m<x2m+1 , we have

U \ 1, ..., 2m
x1 , ..., x2m&1, x~ 2m+=0.

Set wi=xi , i=1, ..., 2m&1, w2m=x~ 2m , w$2m=x2m , and w"2m=x2m+1. The
conditions of the theorem hold.

(2) dim U | [x1 , ..., xk]=2m&1. In this case we may assume, by a
simple argument, that k=2m. Since Sc(c1 , ..., c2m)=2m, the cj's must alter-
nate in sign. Set wi=xi , i=1, ..., 2m, and w$2m=w"2m=w2m . The conditions
of the theorem thus hold.

(o) Assume that conditions (a) and (b) hold and u* is not a best
approximation to f from U2m . Thus there exists a u~ # U2m such that

& f&u*&u~ &<& f&u*&,

from which it follows that

$(&1)i u~ (wi)>0, i=1, ..., 2m&1,

$u~ (w$2m)>0, $u~ (w"2m)>0.

Since U2m is contained in a (2m+1)-dimensional T-space, u~ cannot
have more than 2m distinct zeros. Thus u~ has no zero in [w$2m , w"2m] and
therefore

$u~ (w2m)>0.

The function u~ strictly alternates in sign on the 2m points w1 , ..., w2m ,
where

dim U2m |[w1 , ..., w2m]<2m.

We prove that this is impossible. For each wi there exists a vi in the
T-space of dimension (2m&1) contained in U2m which agrees with u~ at
[w1 , ..., w2m]"[wi]. In addition vi has at most 2m&2 zeros. Thus u~ and vi

have opposite signs at wi , and (u~ &vi)(wi){0. Renormalizing we have con-
structed 2m functions zi=ai (u~ &vi) # U2m satisfying zi (wj)=$ij , i, j=
1, ..., 2m. But then

dim U2m | [w1 , ..., w2m]=2m,

which is a contradiction. K
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Remark 2.1. In the above proof of the sufficiency we used the fact that
U2m is contained in a (2m+1)-dimensional T-space. This same result may
be proven by more involved methods, without this assumption.

Remark 2.2. If u* # U2m is such that f&u* equioscillates at 2m+2
points, then u* is necessarily the unique best approximation to f from U2m .
(This follows from the fact that it is the unique best approximation from
the (2m+1)-dimensional T-space containing U2m .) Thus there must also
exist points for which (a) and (b) hold.

QT-spaces have an additional property which we will find useful. It is the
following.

Lemma 2.3 (Davydov [1]). Assume that U2m is a QT-space, and

dim U2m |[w1 , ..., w2m]<2m.

Then for every choice of

y1< } } } <y2m<y1+2?

satisfying wi�yi�wi+1, i=1, ..., 2m (w2m+1=w1+2?), with [w1 , ..., w2m]{
[ y1 , ..., y2m] we have

dim U2m |[ y1 , ..., y2m]=2m.

Proof. Let u1 , ..., u2m&1 be a basis for the (2m&1)-dimensional T-space
U2m&1 contained in U2m and u2m be such that u1 , ..., u2m is a basis for U2m .
Since

dim U2m | [w1 , ..., w2m]<2m,

there exists a non-trivial v1 # U2m of the form v1=�2m
j=1 ajuj which vanishes

at the [wi]. Furthermore from the T-space property of U2m&1 we must
have a2m{0. Since U2m is contained in a T-space of dimension 2m+1, the
function v1 must change sign at each of the wi , and vanish nowhere else.

Similarly if

dim U2m |[ y1 , ..., y2m]<2m,

then there exists a non-trivial v2 # U2m of the form v2=�2m
j=1 bj uj which

vanishes at the [ yi]. From the T-space property of U2m&1 we must have
b2m{0, and since U2m is contained in a T-space of dimension 2m+1, the
function v2 must change sign at each of the yi , and vanish nowhere else.

Since [w1 , ..., w2m]{[ y1 , ..., y2m], the function b2mv1&a2mv2 # U2m&1 is
not identically zero. However, it has at least 2m zeros (where we count
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zeros which are not sign changes as double zeros in the sense of Z� c). This
contradicts known properties of T-spaces. K

Let us assume that K # C� 2 is an SCVD kernel. From Lemma 2.3 it
follows that if

K \ x1 , ..., x2m

y1 , ..., y2m+=0

for some x1 < } } } < x2m < x1 + 2? and y1 < } } } < y2m < y1 + 2?, then
necessarily

K \w1 , ..., w2m

y1 , ..., y2m +{0

for every choice of w1< } } } <w2m<w1+2? satisfying xi�wi�xi+1, i=
1, ..., 2m (x2m+1=x1+2?), with [x1 , ..., x2m]{[w1 , ..., w2m], and thus is
of one fixed sign throughout this domain. Let us denote its sign by
_1(x, y) # [&1, 1] (to also note its dependence on x and on y). Similarly

K \x1 , ..., x2m

z1 , ..., z2m+{0

for every choice of z1 < } } } < z2m < z1 + 2? satisfying yi �zi � yi+1 ,
i=1, ..., 2m ( y2m+1=y1+2?), with [ y1 , ..., y2m]{[z1 , ..., z2m], and thus is
of one fixed sign throughout this domain. Let us denote its sign by
_2(x, y) # [&1, 1]. There is a relationship between _1 and _2 which we will
use and thus record in this next lemma.

Lemma 2.4. Assume that K is an SCVD kernel, and

K \ x1 , ..., x2m

y1 , ..., y2m+=0

for some x1< } } } <x2m<x1+2? and y1< } } } <y2m<y1+2?. Let _1 and
_2 be as above. Then

_1(x, y) _2(x, y)=&=m=m+1 ,

where the =n are as defined in Definition 1.1.
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Proof. We use a simple form of Sylvester's determinant identity (see
Karlin [4, p. 3]) which says that for x1< } } } <x2m+1<x1+2? and
y1< } } } <y2m+1<y1+2?, we have

K \x1 , ..., x2m&1

y1 , ..., y2m&1+ K \x1 , ..., x2m&1 , x2m , x2m+1

y1 , ..., y2m&1 , y2m , y2m+1+
=K \x1 , ..., x2m&1 , x2m

y1 , ..., y2m&1 , y2m+ K \x1 , ..., x2m&1 , x2m+1

y1 , ..., y2m&1 , y2m+1+
&K \x1 , ..., x2m&1 , x2m+1

y1 , ..., y2m&1 , y2m + K \ x1 , ..., x2m&1 , x2m

y1 , ..., y2m&1, y2m+1+ .

By assumption,

K \ x1 , ..., x2m&1, x2m

y1 , ..., y2m&1, y2m+=0.

In addition, we have

=mK \ x1 , ..., x2m&1

y1 , ..., y2m&1+>0,

and

=m+1K \x1 , ..., x2m&1 , x2m , x2m+1

y1 , ..., y2m&1 , y2m , y2m+1+>0.

Finally,

_1(x, y) K \x1 , ..., x2m&1 , x2m+1

y1 , ..., y2m&1 , y2m +>0,

and

_2(x, y) K \ x1 , ..., x2m&1 , x2m

y1 , ..., y2m&1 , y2m+1+>0,

which proves the lemma. K

3. APPROXIMATION FROM M

As previously, we assume that K # C� 2 is an SCVD kernel, and set

M={g(x)=|
2?

0
K(x, y) h( y) dy : |h( y)|�1 a.e., y # [0, 2?]= .
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In this section we review the main result from Davydov [2] regarding
the best approximation to f # C� from M. To this end we introduce the
following definition.

Definition 3.1. A function g # M is said to be a periodic generalized
perfect spline with 2n knots if:

(a) n=0 and

g(x)=\|
2?

0
K(x, y) dy ;

(b) n�1 and there exist 2n points (called knots)

!1< } } } <!2n<!1+2?=!2n+1

such that

g(x)= :
2n

j=1

(&1) j+1 |
!j+1

!j

K(x, y) dy.

This next result and the ideas behind it will be used many times. It is of
central importance in determining ``orientation'' of the best approximation.
As such we present it as a separate result.

Proposition 3.1. Let n�1, and assume that

g*(x)= :
2n

j=1

(&1) j+1 |
!j+1

!j

K(x, y) dy

is a best approximation to f # C� "M from M. Let ' � [!1 , ..., !2n]. Then the
zero function is a best approximation to f&g* from

A={ :
2n

i=1

ai K(x, !i)+bK(x, ') : ai # R, i=1, ..., 2n, $b�0= ,

where $=(&1) i+1 if ' # (!i , !i+1), i=1, ..., 2n.

Remark. The above proposition states that A is contained in the
tangent cone to M at g*.

Proof. Without loss of generality we assume that ' # (!2n , !1+2?).
Thus $=&1, and in the definition of A we have b�0. Assume that the
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zero function is not a best approximation to f&g* from A. Then there
exists a

v(x)= :
2n

j=1

ajK(x, !j)+bK(x, ') # A

such that

& f&g*&v&<& f&g*&.

Thus for every * # (0, 1] we have

& f&g*&*v&�& f&g*&&*c,

where

c=& f&g*&&& f&g*&v&>0.

Set $j=
1
2(&1) j aj*, *>0, small, j=1, ..., 2n, and $2n+1= 1

2b*. (Thus
$2n+1�0.) Let g(x; !)=g*(x), and for $=($1 , ..., $2n+1) as above, set

g(x; !+$; ')= :
2n&1

j=1

(&1) j+1 |
!j+1+$j+1

!j+$j

K(x, y) dy&|
'

!2n+$2n

K(x, y) dy

+|
'+$2n+1

'
K(x, y) dy&|

!1+2?+$1

'+$2n+1

K(x, y) dy.

Now for *>0, small,

g(x; !+$; ')&g(x; !)

= :
2n&1

j=1

(&1) j+1 _|
!j+1+$j+1

!j+1

K(x, y) dy&|
!j+$j

!j

K(x, y) dy&
&_|

!1+$1

!1

K(x, y) dy&2 |
'+$2n+1

'
K(x, y) dy&|

!2n+$2n

!2n

K(x, y) dy&
=2 :

2n

j=1

(&1) j $jK(x, !j)+2$2n+1 K(x, ')+o($)

=*v(x)+o(*).

Since $2n+1�0, we have g( } ; !+$; ') # M. (If $2n+1<0, this would not be
true.) Thus
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& f&g*&=& f&g( } ; !)&�& f&g( } ; !+$; ')&

=& f&( g( } ; !)+*v+o(*))&

=& f&g*&*v&+o(*)

�& f&g*&&*c+o(*).

But then for *>0, sufficiently small, a contradiction ensues. K

We now state and reprove the main result in Davydov [2]. We present
it here for completeness, and because we apply a slightly different method
of proof.

Theorem 3.2 (Davydov [2]). Assume that K is an SCVD kernel, and
f # C� "M. There exists a unique best approximation g* to f from M. g* is a
periodic generalized perfect spline with 2n knots and is characterized as
follows.

(a) If n=0, then

g*(x)=$ |
2?

0
K(x, y) dy

for some $ # [&1, 1], and there exists a % such that

=1$( f&g*)(%)=& f&g*&.

(b) If n�1, then

g*(x)= :
2n

j=1

(&1) j+1 |
!j+1

!j

K(x, y) dy

for some !1< } } } <!2n<!1+2?=!2n+1, as above, and one of the following
is true:

(b1) f&g* equioscillates on 2n+2 points,

(b2) there exist %1< } } } <%2n<%1+2? such that

K \%1 , ..., %2n

!1 , ..., !2n+=0

and for some %$2n , %"2n satisfying %2n&1<%$2n�%2n�%"2n<%1+2? we have

(&1) i+1 =n_2(%, !)( f&g*)(%i)=& f&g*&, i=1, ..., 2n&1
(3.1)

&=n_2(%, !)( f&g*)(%$2n)=&=n_2(%, !)( f&g*)(%"2n)=& f&g*&.
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Proof. From the compactness of M, we have the existence of a best
approximation g* to f from M. We refer to Glashoff [3] where the method
of proof shows that g* must be a periodic generalized perfect spline (with
a finite number of knots). The uniqueness follows from a standard con-
vexity argument, since a strict convex combination of two distinct periodic
generalized perfect splines is not a periodic generalized perfect spline.

Sufficiency. We assume that g* satisfies (a) or (b). If (a) holds then for
any g # M, g{g*,

=1$g(%)==1 $ |
2?

0
K(%, y) h( y) dy<|

2?

0
|K(%, y)| dy==1$g*(%)

and thus

& f&g*&==1 $( f&g*)(%)<=1 $( f&g)(%)�& f&g&

and so g* is the best approximation to f from M.
If (b) holds, and

& f&g&<& f&g*&

for some g(x)=�2?
0 K(x, y) h( y) dy # M, then

Z� c(( f&g*)&( f&g))=Z� c( g&g*)�Sc(h&h*)�2n, (3.2)

where g*(x)=�2?
0 K(x, y) h*( y) dy. (The right most inequality in (3.2)

comes from the form of h*.) If f&g* equioscillates on 2n+2 points, then

2n+2�Z� c(( f&g*)&( f&g))

and a contradiction immediately ensues from (3.2). This proves the suf-
ficiency of (b1).

Assume that (b2) holds. Here the ``orientation'' comes into play. From
(3.2) we must have 2n=Z� c(( f&g*)&( f&g))=Sc(h&h*). From (3.1)

(&1) i+1 =n_2(%, !)( g&g*)(%i)>0, i=1, ..., 2n&1

&=n _2(%, !)( g&g*)(%$2n)>0, &=n_2(%, !)( g&g*)(%"2n)>0.

Since ( f&g*)&( f&g)=g*&g cannot, by (3.2), have any additional
zeros, we must have

&=n_2(%, !)( g&g*)(%2n)>0,

and thus

(&1)i+1 =n_2(%, !)( g&g*)(%i)>0, i=1, ..., 2n.
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Set

uj (x)=|
!j+1

!j

K(x, y) | h( y)&h*( y) | dy, j=1, ..., 2n.

Since Sc(h&h*)=2n, the function h&h* does not identically vanish on
[!j , !j+1] and thus uj{0. Furthermore, since g # M, we have |h( y)|�
|h*( y)| for all y and thus

g&g*= :
2n

j=1

(&1) j uj .

Therefore

di=(&1)i+1 =n_2(%, !) :
2n

j=1

(&1) j uj (%i)>0, i=1, ..., 2n. (3.3)

Recall that

_2(%, !) K \ %1 , ..., %2n

y1 , ..., y2n+>0

for every choice of y1 < } } } < y2n < y1 + 2? satisfying !i � yi � !i+1 ,
i=1, ..., 2n with [!1 , ..., !2n]{[ y1 , ..., y2n]. Thus

_2(%, !) U \ 1, ..., 2n
%1 , ..., %2n+>0.

A simple matrix computation (solve for the coefficient 1 of u2n in (3.3))
shows that

1=sgn \&=n :
2n

k=1

dkU \ 1, ..., 2n&1
%1 , ..., %� k , ..., %2n++ ,

where

U \ 1, ..., 2n&1
%1 , ..., %� k , ..., %2n+=det[uj (%i)]2n&1

j=1
2n
i=1.
i{k

An additional calculation shows that

sgn U \ 1, ..., 2n&1
%1 , ..., %� k , ..., %2n+==n

for each k=1, ..., 2n. This is a contradiction and the sufficiency is proved.
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Necessity. Assume that g* is a periodic generalized perfect spline with
n=0 knots. Then

g*(x)=$ |
2?

0
K(x, y) dy

for some $ # [&1, 1]. If there is no % such that

=1$( f&g*)(%)=& f&g*&,

then

& f&*g*&<& f&g*&

for some * # (0, 1) (near 1), which implies that g* is not a best approxima-
tion to f from M. This proves the necessity in the case n=0.

Assume that g* is a periodic generalized perfect spline with 2n (n�1)
knots. From Proposition 3.1 the zero function is a best approximation to
f&g* from

A={ :
2n

i=1

ai K(x, !i)+bK(x, ') : ai # R, i=1, ..., 2n, b�0= ,

where ' # (!2n , !1+2?). This immediately implies that the zero function is
a best approximation to f&g* from the QT-space

U2n=span[K( } , !1), ..., K( } , !2n)].

Thus either (b1) holds (i.e., at least 2n+2 points of equioscillation) or we
have exactly 2n points of equioscillation as in the statement of Theorem 2.2.
It remains to prove the explicit orientation of the sign of the equioscillations
as stated in (b2). Assume that f&g* equioscillates at exactly 2n points. Let
[%i]2n

i=1 , %$2n , %"2n be the associated ``equioscillation'' and ``additional'' points.
Let

V2n+1=span[K( } , !1), ..., K( } , !2n), K( } , ')].

V2n+1 is a (2n+1)-dimensional T-space. The zero function is therefore not
a best approximation to f&g* from V2n+1 (see Theorem 2.1), but is a best
approximation to f&g* from A. Thus if

v*(x)= :
2n

i=1

ci K(x, !i)+dK(x, ')
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is the best approximation from V2n+1 , then

& f&g*&v*&<& f&g*&

and d<0.
From the first condition we have

v*(%i)( f&g*)(%i)>0, i=1, ..., 2n&1

v*(%$2n)( f&g*)(%$2n)>0

v*(%"2n)( f&g*)(%"2n)>0.

Since no v # V2n+1"[0] has more than 2n zeros and v*(%$2n) v*(%"2n)>0, we
must have v*(%2n) v*(%$2n)>0. Therefore v* alternates in sign on the
[%i]2n

i=1. Let ` # (%2n , %1+2?) be such that v*(`)=0. Solving for d we
obtain

d=
:
2n

i=1

(&1) i+1 v*(%i) K \%1 , ..., %� i , ..., %2n , `
!1 , ..., !2n +

K \%1 , ..., %2n , `
!1 , ..., !2n , '+

.

By definition,

sgn K \%1 , ..., %2n , `
!1 , ..., !2n , '+==n+1

and

sgn K \%1 , ..., %� i , ..., %2n , `
!1 , ..., !2n +=_1(%, !)

for each i=1, ..., 2n. The v*(%i) alternate in sign and d<0. Thus

sgn(&1) i+1 v*(%i)=&=n+1_1(%, !).

From Lemma 2.4, this implies that

sgn(&1)i+1 v*(%i)==n_2(%, !).

Thus

(&1) i+1 =n_2(%, !)( f&g*)(%i)=& f&g*&, i=1, ..., 2n&1

&=n_2(%, !)( f&g*)(%$2n)=&=n_2(%, !)( f&g*)(%"2n)=& f&g*&,

and the theorem is proved. K
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The condition |h( y)|�1 in the definition of M may be generalized to

l( y)�h( y)�u( y),

where l, u # C� and l<u. The same results then hold where h jumps between
being equal to l and to u on alternate intervals.

Consider the problem

e(:)=min[& f&:g& : g # M].

For each :>0 there exists a unique g: # M which attains the above
minimum. Assuming that f{:g: , the characterization of g: is given by
Theorem 3.2. How does g: vary with :? (Since g: is uniquely determined,
it may be shown that g: continuously varies with :.) As : increases the
number of knots (and equioscillations) increases. Case (b1) of Theorem 3.2
(where the number of equioscillations is at least two more than the number
of knots) occurs exactly at the : for which the number of knots of g:

increases.
Let :~ be the smallest value for which f # :~ M. (:~ may be infinite.) For

each : # (0, :~ ), set

g:(x)=|
2?

0
K(x, y) h:( y) dy.

The function h: is a step function taking on the values \1 with 2k(:)
jumps; i.e., g: has 2k(:) knots.

Proposition 3.3. On the interval (0, :~ ), the value e(:) is a strictly
decreasing function of :. Furthermore, if 0<;<:<:~ , then k(;)�k(:). We
have k(;)<k(:) for all : # (;, :~ ) if f&;g; equioscillates on at least
2k(;)+2 points.

Proof. Let 0<;<:<:~ . Then ;M/:M and :g: # :M";M. Thus
from the uniqueness of the best approximation from :M

e(:)<e(;).

Now assume that f&;g; equioscillates on 2m points. Then

2m�Z� c(( f&;g;)&( f&:g:))

=Z� c(:g:&;g;)�Sc(:h:&;h;)=Sc(:h:)=2k(:).

Since m�k(;) we obtain k(;)�k(:). If f&;g; equioscillates on at least
2k(;)+2 points, then k(;)+1�k(:). K
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4. A FIXED NUMBER OF KNOTS WITH A FIXED KNOT

Let K be SCVD and for n=1, 2, ..., set

P+
2n(!)

={ :
2n

j=1

(&1) j+1 |
!j+1

!j

K(x, y) dy : !=!1�!2� } } } �!2n�!2n+1=!1+2?= .

Note the orientation of sign at !=!1 . Let f # C� . In this section we assume
that the best approximation to f from M is not in P+

2n(!). We characterize
the (unique) best approximation to f from P+

2n(!). (Note that this set is not
convex.) It follows from a standard compactness argument that a best
approximation exists. The following theorem totally characterizes this best
approximation.

Theorem 4.1. Under the above assumptions there exists a unique best
approximation g+ to f from P+

2n(!). g+ has the form

g+(x)= :
2n

j=1

(&1) j+1 |
!j+1

!j

K(x, y) dy,

where !=!1<!2< } } } <!2n<!2n+1=!1+2?, i.e., g+ # int P+
2n(!). It is

uniquely characterized by the fact that f&g+ equioscillates on exactly 2n
points.

Remark. f&g+ cannot possibly equioscillate on 2n points which satisfy
the conditions (b2) of Theorem 3.2, nor at more than 2n points. For it
would then be the best approximation to f from M. Note however that no
claim is made as to any determinant vanishing which would connect the
points of equioscillation and the knots. That is, there is no ``orientation''
involved in this result. (We could also define P+

0 (!) (which is independent
of ! and simply contains one function). The same result then holds.) In a
totally parallel fashion we can of course define P&

2n(!) and obtain the
analogous result.

The proof of Theorem 4.1 is technically cumbersome. We divide the
proof into two main parts. In the first part we show that if g+ (a best
approximation to f from P+

2n(!)) is contained in int P +
2n(!), then f&g+

equioscillates on 2n points and that this latter condition uniquely charac-
terizes the best approximation from P +

2n(!). In the second part we prove
that a best approximation must in fact be contained in int P +

2n(!).

Proposition 4.2. Assume that g+, a best approximation to f from
P+

2n(!), is contained in int P+
2n(!). Then f&g+ equioscillates on exactly 2n
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points. Furthermore this latter condition uniquely characterizes the best
approximation to f from P+

2n(!).

Proof. For each !=(!1 , ..., !2n), !=!1�!2� } } } �!2n�!2n+1=!1+2?,
set

g!(x)=|
2?

0
K(x, y) h!( y) dy,

where

h!( y)=(&1) j+1, !j�y<!j+1, j=1, ..., 2n.

Obviously Sc(h!)�2n. Moreover a simple argument (see, e.g., Pinkus [7,
p. 140]) shows that for any !1 and !2, as above, we have

Sc(h!1&h!2)�2n&2.

Now assume that g+ is a best approximation to f from P+
2n(!), and that

f&g+ equioscillates on 2n points. Let g!1 # P+
2n(!), g!1{g+, satisfy

& f&g!1&�& f&g+&.

Then

2n�Z� c(( f&g+)&( f&g!1))=Z� c( g!1&g+)

(where we count nonnodal zeros twice). Set

g+(x)=|
2?

0
K(x, y) h+( y) dy.

From the SCVD property of K we have

Z� c( g!1&g+)�Sc(h!1&h+)�2n&2,

which is a contradiction. Thus g+ is necessarily the unique best approxima-
tion to f from P+

2n(!).
Assume that g+ # int P+

2n(!). The perturbation argument given in
Proposition 3.1 (without the ' and without perturbing !=!1) proves that
the zero function is necessarily a best approximation to f&g+ from

span[K( } , !2), ..., K( } , !2n)].

These 2n&1 functions form a T-system and thus f&g+ must equioscillate
on at least 2n points. Since g+ is not the best approximation to f from M,
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f&g+ cannot equioscillate at more than 2n points. This proves the
proposition. K

It is in proving that any best approximation is necessarily in int P+
2n(!)

that we encounter cumbersome technical details. To this end we first prove
the result for ECVD3 kernels. This allows us to consider first derivatives.
We then show how to apply a smoothing procedure, using the de la Valle� e
Poussin means, to obtain the final result.

Proposition 4.3. Assume that K is SCVD and ECVD3 , and that the
best approximation to f from M is not in P+

2n(!). If g+ is a best approxima-
tion to f from P+

2n(!), then g+ # int P+
2n(!).

Proof. We assume g+ � int P+
2n(!). Thus

g+(x)= :
2k

j=1

(&1) j+1 |
'j+1

'j

K(x, y) dy,

where '1<'2< } } } <'2k<'2k+1='1+2?, and k�n&1. For convenience
we set h+( y)=(&1) j+1 for y # ('j , 'j+1), j=1, ..., 2k. Note that ! may or
may not be included among the ['j]2k

j=1 . Furthermore, if ! is included
among the ['j]2k

j=1 , it may equal an 's for s odd or s even. (These are
different because of the orientation of the jump. We will take s=1 or
s=2.) There are various cases which we will consider.

Case 1. ! � ['1 , ..., '2k].

We first claim that the zero function is a best approximation to f&g+

from

A={ :
2k

i=1

ai K(x, 'i)+bK(x, !) : ai # R, _b�0= ,

where _=sgn h+(!).
This result is a direct consequence of Proposition 3.1. The knot ! here

plays the role of ' in Proposition 3.1. Note that g(x ; '+$; !) # P+
2n(!),

where

g(x ; '+$; !)= :
2k

j=1

(&1) j+1 |
'j+1+$j+1

'j+$j

K(x, y) dy&_ |
!+

!&

K(x, y) dy

with !&=!, !+=!+$2k+1 if _=&1, and !&=!&$2k+1 , !+=! if _=1.
We now apply the method of proof of Theorem 3.2. Exactly the argu-

ment found therein implies that g+ is a best approximation to f from M,
which is a contradiction. We will present much of the argument here, as we
shall not do so in the other cases.
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Let

v(x)= :
2k

i=1

ci K(x, 'i)+dK(x, !)

be the best approximation to f&g+ from the T-space

span[K( } , '1), ..., K( } , '2k), K( } , !)].

Therefore f&g+&v equioscillates on at least 2k+2 points. If _d�0 then
v # A. Thus v=0 and f&g+ equioscillates on at least 2k+2 points. But by
Theorem 3.2, this implies that g+ is a best approximation to f from M, a
contradiction. Thus _d>0.

The zero function is a best approximation to f&g+ from the QT-space

span[K( } , '1), ..., K( } , '2k)].

This, together with the fact that g+ is not a best approximation to f from
M, implies that f&g+ exhibits exactly 2k points of equioscillation as in the
statement of Theorem 2.2. We now put this fact together with _d>0 (word
for word as in the proof of Theorem 3.2) to prove that g+ satisfies condi-
tion (b2) of Theorem 3.2, and thus once again g+ is a best approximation
to f from M. This contradiction implies that g+ is not of the above form.

Case 2. ! # ['1 , ..., '2k] and k�n&2.

We first claim that the zero function is a best approximation to f&g+

from

A={ :
2k

i=1

ai K(x, 'i)+bK(x, `) : ai # R, $b�0= ,

where $=sgn h+(`), and ` is an arbitrary knot.
We prove this using the argument to be found in Proposition 3.1. We

can perturb all the knots exactly as in the proof of Proposition 3.1, and
g(x ; '+$; `) will not leave the class P+

2n(!). We consider g(x; '+$; `) as
having the 2k+4�2n knots 'i+$i , i=1, ..., 2k, `, `+$2k+1 , !, and ! (i.e.,
two knots at the point ! !).

We now apply the exact same argument as found in Case 1 (and in the
proof of Theorem 3.2) which proves that g+ is a best approximation to f
from M. This contradiction again implies that g+ is not of the above form.

Case 3. !='1 and k=n&1.

A perturbation argument, as in Cases 1 or 2 (or as in Proposition 3.1),
implies that the zero function is a best approximation to f&g+ from

span[K( } , '1), ..., K( } , '2n&2)].
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From Theorem 2.2 there exist points %1< } } } <%2n&2<%1+2? for which

K \%1 , ..., %2n&2

'1 , ..., '2n&2+=0, (4.1)

and for some %$2n&2 , %"2n&2 satisfying %2n&3<%$2n&2�%2n&2�%"2n&2<
%1+2?, we have

(&1)i =n&1_2(%, ')( f&g+)(%i)=& f&g+&, i=1, ..., 2n&3

=n&1_2(%, ')( f&g+)(%$2n&2)==n&1_2(%, ')( f&g+)(%"2n&2)=& f&g+&.

(If the sign were reversed, then g+ would be a best approximation to f
from M.)

As such there also exist [ti$]2n&2
i=1 and [ti"]2n&2

i=1 satisfying ti$�%i�ti"<
t$i+1 , i=1, ..., 2n&2 (t$2n&1=t$1+2?), for which

(&1)i =n&1_2(%, ')( f&g+)(ti$ )

=(&1) i =n&1_2(%, ')( f&g+)(ti")=& f&g+&,

and

|( f&g+)(x)|<& f&g+&, x # (ti" , t$i+1), i=1, ..., 2n&2.

In each interval (ti" , t$i+1), i=1, ..., 2n&2, we choose a point {i # (ti" , t$i+1),
and consider the function

u( y)=K \ {1 , ..., {2n&2

y, '2 , ..., '2n&2+ .

Since u is periodic, it must have another zero ` apart from the '2 , ..., '2n&2

(the case of a double zero at one of these points can be avoided by a small
perturbation of {1). From (4.1) and Lemma 2.4, we must have `{'1 . For
convenience, we assume that ` # ('1 , '2).

We may also keep !='1 fixed, perturb '2 , ..., '2n&2 , and add two knots
near `. It then follows (exactly as in Proposition 3.1) that the zero function
is a best approximation to f&g+ from

A={ :
2n&2

i=2

ai K(x, 'i)+bK(x, `) : ai # R, b�0= .

We claim that the zero function is not a best approximation to f&g+

from

span[K( } , `), K( } , '2), ..., K( } , '2n&2)].
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This follows from Theorem 2.2. If the zero function is a best approximation
there exist values w1< } } } <w2n&2<w1+2? which are essentially points
of equioscillation, and for which

K \ w1 , ..., w2n&2

`, '2 , ..., '2n&2+=0.

But by the choice of the {i and equioscillation pattern of f&g+, the
[wi]2n&2

i=1 must strictly interlace the [{i]2n&2
i=1 . A contradiction ensues from

K \ {1 , ..., {2n&2

`, '2 , ..., '2n&2+=0,

and Lemma 2.4.
As such there exists a

p(x)=dK(x, `)+ :
2n&2

i=2

ci K(x, 'i)

for which

& f&g+&p&<& f&g+&,

and thus

(&1) i =n&1_2(%, ') p(%i)>0, i=1, ..., 2n&2.

If p # A, then we contradict the fact that the zero function is a best
approximation to f&g+ from A.

Solving for d we see that

sgn d=sgn
&=n&1 _2(%, ') K \%2 , ..., %2n&2

'2 , ..., '2n&2+
K \ %1 , ..., %2n&2

`, '2 , ..., '2n&2+
.

Now,

sgn K \%2 , ..., %2n&2

'2 , ..., '2n&2+==n&1

(the signs are the same if we delete any %i rather than %1), and

sgn K \ %1 , ..., %2n&2

`, '2 , ..., '2n&2+=_2(%, ').
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This implies that d<0 and thus p # A, which is a contradiction. g+ is not
of the above form.

Case 4. !='2 and k=n&1.

We assume that g+ has the form

g+(x)= :
2n&2

j=1

(&1) j+1 |
'j+1

'j

K(x, y) dy,

with !='2 . We are now limited in our perturbation. (The two extra knots
must be used to alter the orientation at !.) It is here that we make use of
the ECVD3 property of K.

We first claim that the zero function is a best approximation to f&g+

from

A={ :
2n&2

i=1

ai K(x, 'i)+bK$y(x, '2) : ai # R, b�0= .

The proof of this fact parallels the proof of Proposition 3.1. Assume that
the zero function is not a best approximation to f&g+ from A. There then
exists a

v(x)= :
2n&2

j=1

ajK(x, 'j)+bK$y(x, '2) # A

such that

& f&g+&v&<& f&g+&.

Thus for every * # [0, 1] we have

& f&g+&*v&�& f&g+&&*c,

where

c=& f&g+&&& f&g+&v&>0.

Set $j=
1
2(&1) j aj*, *>0, small, j=1, ..., 2n&2, $2n&1=$1 , and $$2=

- b*�2, $2"=$2+$$2 . Let g(x; ')=g+(x), and for $=($1 , ..., $2n&2 , $$2) as
above, set

g(x; '+$)= :
2n&2

j=3

(&1) j+1 |
'j+1+$j+1

'j+$j

K(x, y) dy+|
'2&$$2

'1+$1

K(x, y) dy

&|
'2

'2&$$2

K(x, y) dy+|
'2+$2"

'2

K(x, y) dy&|
'3+$3

'2+$2"
K(x, y) dy.
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Now for *>0, small,

g(x; '+$)&g(x; ')

= :
2n&2

j=3

(&1) j+1 _|
'j+1+$j+1

'j+1

K(x, y) dy&|
'j+$j

'j

K(x, y) dy&
&|

'1+$1

'1

K(x, y) dy&|
'3+$3

'3

K(x, y) dy

+2 |
'2+$2"

'2

K(x, y) dy&2 |
'2

'2&$$2

K(x, y) dy

=2 :
2n&2

j=1
j{2

(&1) j |
'j+$j

'j

K(x, y) dy+2 |
'2+$2"

'2+$$2

K(x, y) dy

+2 _|
'2+$$2

'2

K(x, y) dy&|
'2

'2&$$2

K(x, y) dy&
=_2 :

2n&2

j=1

(&1) j $jK(x, 'j)+o($)&+[2($$2)2 K$y(x, '2)+o(($$2)2)]

=*v(x)+o(*).

If b=0, then $$2=0 and $2"=$2 , so that g( } ; '+$) # P2n&2/P+
2n(!). If

b>0, then $$2 , $2">0 for *>0 sufficiently small, and g( } ; '+$) # P+
2n(!).

Thus

& f&g+&=& f&g( } ; ')&�& f&g( } ; '+$)&

=& f&( g( } ; ')+*v+o(*))&

=& f&g+&*v&+o(*)

�& f&g+&&*c+o(*).

But then for *>0, sufficiently small, a contradiction ensues.
We may now apply the argument found in the proof of Case 1 and in

Theorem 3.2. Two things which should be noted are that

span[K( } , '1), ..., K( } , '2n&2), K$y( } , '2)]

is a T-space, and the determinant

K \ %1 , ..., %2n&2 , `
'1 , '2 , '2 , '3 , '4 , ..., '2n&2+ ,

for any ` # (%2n&2 , %1+2?) is of sign =n . For these two properties to hold
we need the ECVD3 property. K
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We have proved Theorem 4.1 in the case where K is ECVD3. It remains
to remove this extraneous restriction.

Proposition 4.4. Assume that K is SCVD, and that the best approxima-
tion to f from M is not in P+

2n(!). If g+ is a best approximation to f from
P+

2n(!), then g+ # int P+
2n(!).

Proof. We recall that the de la Valle� e Poussin kernel

|m(t)=
1

\2m
m +

:
m

&=&m \
2m

m+&+ ei&t,

is ECVD2m+1. In addition for each function f # C� , the transformation

Vm(x)=
1

2? |
2?

0
|m(x&y) f ( y) dy

defines the de la Valle� e Poussin means (or V-means) of f. This Vm is a tri-
gonometric polynomial of degree at most m, and uniformly converges to f
as m � �.

For K, which is SCVD, let

Km(x, y)=
1

(2?)2 |
2?

0
|

2?

0
|m(x&t) K(t, s) |m( y&s) dt ds.

It follows from the basic composition formula (see Karlin [4, p. 17]) that
Km is ECVD2m+1. Furthermore, Km converges uniformly to K as m � �.

Set

P+
2n(! ; m)={ :

2n

j=1

(&1) j+1 |
!j+1

!j

Km(x, y) dy= .

Let f be as above. It may be shown that for m sufficiently large, the best
approximation to f from P+

2n(! ; m), which we will denote by g+( } ; m), is
not the best approximation to f from the associated Mm . As such it follows
from Propositions 4.2 and 4.3 that g+( } ; m) # int P+

2n(! ; m), it is unique,
and f&g+( } ; m) equioscillates on exactly 2n points. Let m � �. Then
g+( } ; m) converges uniformly to some g+ # P+

2n(!). While it is possible that
in the limit g+ � int P+

2n(!), it nevertheless follows that f&g+ exhibits at
least 2n points of equioscillation. If g+ � int P+

2n(!) (or f&g+ exhibits more
than 2n points of equioscillation), then g+ is the best approximation to f
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from M. This contradiction implies that g+ # int P+
2n(!). From Proposi-

tion 4.2 g+ is the unique best approximation to f from P+
2n(!). K

Propositions 4.2, 4.3, and 4.4 together prove Theorem 4.1.

5. A FIXED NUMBER OF KNOTS

The best approximation from the set P+
2n(!) (P&

2n(!)) is unique and may
be easily characterized. Furthermore, if the best approximation is not a
best approximation from M, then this characterization is simple and has
no ``orientation'' component.

For n=1, 2, ..., set

P2n=.
!

P+
2n(!).

That is, P2n is the set of periodic generalized perfect splines with at most 2n
knots. For n=0,

P0={\|
2?

0
K(x, y) dy= .

Is the best approximation to f # C� from P2n unique and can it be easily
characterized? The answer to both questions is no. We present a necessary
condition for a best approximation from P2n (stronger than Theorem 4.1),
but also show that this condition is not sufficient. Furthermore we con-
struct a function with many best approximations from P2n . (Note that P2n

is compact, and thus there always exists a best approximation.) In what
follows we will take n�1. The case P0 is not at all difficult, but is some-
what different.

Proposition 5.1. Let f # C� and assume that the best approximation to f
from M is not in P2n . If g* is a best approximation to f from P2n then

g*(x)= :
2n

j=1

(&1) j+1 |
!j+1

!j

K(x, y) dy

for some !1< } } } <!2n<!2n+1=!1+2?, i.e., g* # int P2n , and there exist
%1< } } } <%2n<%1+2? such that

K \%1 , ..., %2n

!1 , ..., !2n+=0
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and for some %$2n , %"2n satisfying %2n&1<%$2n�%2n�%"2n<%1+2? we have

(&1) i =n_2(%, !)( f&g*)(%i)=& f&g*&, i=1, ..., 2n&1

=n_2(%, !)( f&g*)(%$2n)==n_2(%, !)( f&g*)(%"2n)=& f&g*&.

Proof. It follows from Theorem 4.1 that g* # int P2n (and that f&g*
exhibits exactly 2n points of equioscillation). The perturbation technique
found in Proposition 3.1 implies that the zero function is a best approxima-
tion to f&g* from

span[K( } , !1), ..., K( } , !2n)].

Since this is a QT-space of dimension 2n, and g* is not the best approxima-
tion to f from M, the remaining statement of the theorem follows. (See also
the proof of Case 3 in Proposition 4.3.) K

The necessary conditions of Proposition 5.1 are not, in general, sufficient
and the best approximation from P2n is not necessarily unique. We con-
struct an example which exhibits these traits.

Let k # C� , k>0, be such that K(x, y)=k(x&y) is SCVD. (In this case
=n=1 for all n.) For each : # [0, ?�n), set

h:, n( y)=(&1) j, :+
j?
n

�y<:+
( j+1) ?

n
,

j=0, 1, ..., 2n&1. Let

g:(x)=|
2?

0
k(x&y) h:, n( y) dy.

Since g:(x+?�n)=&g:(x) there exists a ; # [0, ?�n) such that g: alter-
nately attains its norm at the 2n points ;+:+i?�n, i=0, 1, ..., 2n&1. (We
can and will assume that g: attains its norm only at these 2n points.)

It is a known fact, see Pinkus [7, p. 174], that each g: is a function of
minimum norm in P2n . Thus each g: is a best approximation to f=0 from
P2n and uniqueness does not hold.

Note that from the necessary conditions of Proposition 5.1, we have that

K \
;, ;+

?
n

, ..., ;+
(2n&1) ?

n

0,
?
n

, ...,
(2n&1) ?

n +=0
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and (since =n=1 for all n)

g: \;+:+
i?
n +=(&1) i _2(;) &g:&, i=0, ..., 2n&1,

where the _2(;) is the sign of the appropriate determinant.
Consider g0 which equioscillates at ;+i?�n, i=0, 1, ..., 2n&1. For any f

such that f (;+i?�n)=0, i=0, 1, ..., 2n&1, and

& f&g0&=&g0 &

we have the necessary conditions of Proposition 5.1 holding. Consider g:

for any : # (0, ?�n). It is not difficult to see that we may construct f # C� ,
with f (;+i?�n)=0, i=0, 1, ..., 2n&1, and further satisfying

& f&g:&<&g:&=&g0 &=& f&g0 &.

This shows that the necessary condition of Proposition 5.1 is not sufficient.
We now consider a different problem connected with P2n . For f # C� , set

E2n(:)=min[& f&:g& : g # P2n].

(Compare this value with the e(:) of Section 3.) We prove the following
result.

Theorem 5.2. There exists an :* # [0, �) with the following properties:

(1) On the interval (0, :*] the value E2n(:) is strictly decreasing and
E2n(:)=e(:).

(2) On the interval (:*, �) the value E2n(:) is strictly increasing and
E2n(:)>e(:).

(3) For :=:* there exists a unique g:* # P2n which attains the mini-
mum in the above.

(4) g:* is uniquely characterized by the property that f&:*g:* equi-
oscillates on at least 2n+2 points.

Proof. For each :, let g: # P2n be such that

E2n(:)=& f&:g:&.

We know from the results of this section that the g: is not necessarily
uniquely defined.

(1) From Proposition 3.3 it follows that if :g: is the best approxima-
tion to f from :M, i.e., E2n(:)=e(:), then for all ;<: the function ;g; is
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also the best approximation to f from ;M. Thus E2n(:)=e(:) on some
interval (0, :*]. Now :*<�. To see this note that e(:) is a non-increasing
function while, since

min
g # P2n

&g&>0,

it follows that E2n(:) � � as : � �.

(2) This is the more technically difficult proof in this theorem. We
prove it by a perturbation argument.

Let :>:*. From Proposition 5.1, we have that g: (which is not
necessarily uniquely defined) has the form

g:(x)= :
2n

j=1

(&1) j+1 |
!j+1

!j

K(x, y) dy

for some !1< } } } <!2n<!2n+1=!1+2?. Furthermore there exist %1< } } } <
%2n<%1+2? such that

K \%1 , ..., %2n

!1 , ..., !2n+=0

and for some %$2n , %"2n satisfying %2n&1<%$2n�%2n�"2n<%1+2? we have

(&1) i =n_2(%, !)( f&g:)(%i)=& f&g:&, i=1, ..., 2n&1

=n_2(%, !)( f&g:)(%$2n)==n_2(%, !)( f&g:)(%"2n)=& f&g:&.

We first note that the functions

[K( } , !1), ..., K( } , !2n), g:( } )]

form a T-system of dimension 2n+1. In addition, a simple calculation
shows that if we evaluate these functions at 2n+1 consecutive points, then
the sign of the associated determinant is &=n+1.

Since f&:g: equioscillates on exactly 2n points, there exists a

v(x)= :
2n

j=1

ajK(x, !j)+dg:(x)

such that

& f&:( g:+v)&<& f&:g:&.
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Thus for every * # [0, 1]

& f&:( g:+*v)&�& f&:g:&&*c,

where c=& f&:g: &&& f&:( g:+v)&.
From the above it follows that

(&1) i =n_2(%, !) v(%i)>0, i=1, ..., 2n.

These inequalities (together with the sign of the associated determinant of
the (2n+1)-dimensional T-system) imply that d<0, as was the case in the
proof of Theorem 3.2.

Let $j=
1
2(&1) j aj*, j=1, ..., 2n, $2n+1=$1 , and

g(x; !+$)= :
2n

j=1

(&1) j+1 |
!j+1+$j+1

!j+$j

K(x, y) dy.

From Proposition 3.1, we have that

g(x; !+$)&g:(x)=* :
2n

j=1

aj K(x, !j)+o(*).

Thus

(1+*d ) g(x ; !+$)&g:(x)=(1+*d )( g(x ; !+$)&g:(x))+* dg:(x)

=*v(x)+o(*).

Set :*=:(1+*d ). Since d<0 we have :*<:. Now

E(:*)�& f&:* g( } ; !+$)&=& f&:( g:+*v)+o(*)&

�& f&:( g:+*v)&+o(*)�E(:)&*c+o(*).

For *>0, sufficiently small, *c&o(*)>0 and thus E(:*)<E(:). This
implies that E(:) is strictly increasing on (:*, �).

(3) and (4). Let :m: be the best approximation to f from :M, i.e.,

e(:)=& f&:m:&,

as in Proposition 3.3. For :�:* this m: and the g: which appears in E2n(:)
are identical. However, for :>:* this m: is not in P2n , i.e., it has more than
2n knots, and f&:m: exhibits at least 2n+2 points of equioscillation. As
such, from continuity considerations (lim: a :* m:=m:*=g:*), g:* # P2n and
f&:*g:* exhibits at least 2n+2 points of equioscillation.
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We claim that for any g # P2n and :�0, :g{:*g:* , we have

& f&:*g:*&<& f&:g&.

Assume not. Then

2n+2�Z� c(( f&:*g:*)&( f&:g))=Z� c(:g&:*g:*)�Sc(:h&:*h:*)�2n,

which is a contradiction. K

6. NONNEGATIVE MEASURES

Let B denote the set of finite Borel measures on [0, 2?), and set

M�={ g(x)=|
2?

0
K(x, y) d+( y) : + # B, +�0= ,

where by +�0 we mean that + is a nonnegative measure. In addition, we
set

Qn={ :
n

i=1

ai K(x, !i) : ai�0, !1� } } } �!n�!1+2?= ,

and for any ! # [0, 2?)

Qn(!)={ :
n

i=1

ai K(x, !i) # Qn : !1=!= .

It will not suffice, in this section, to only assume that K is SCVD. We
need slightly more. We assume throughout this section that K # C� 2 is con-
tinuously differentiable in y, and for each positive integer m there exists an
=m # [&1, 1] such that

=mK \ x1 , ..., x2m&1

y1 , ..., y2m&1+>0

for all x1< } } } <x2m&1<x1+2? and y1� } } } �y2m&1<y1+2?, where at
most two consecutive yj's are permitted to be equal. If yj=yj+1 , we replace
column j+1 by [�K(xi , yj)��y]2m&1

i=1 .
We will prove three main results, paralleling those obtained for M, Pn ,

and P+
2n(!). We characterize the unique best approximation to f # C� from

M� . We give necessary (but not sufficient) conditions for best approxima-
tions to f from Qn , and we characterize the unique best approximation to
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f from Qn(!). Note that M� , Qn , and Qn(!) are existence sets. This can be
shown in an analogous way to the proof of Lemma 5.2 in Pinkus [6].

An essential tool in proving these results is the following perturbation
result.

Proposition 6.1. Let n�1, and g*(x)=�n
i=1 ai K(x, !i) be a best

approximation to f # C� from M� , where ai>0, i=1, ..., n, and !1< } } } <
!n<!1+2?. Then for any ' � [!1 , ..., !n], the zero function is a best
approximation to f&g* from

A={ :
n

i=1

bi K(x, !i)+ci
�K(x, !i)

�y
+dK(x, ') : bi , ci # R, i=1, ..., n, d�0= .

Proof. Assume not. Let

v(x)= :
n

i=1

bi K(x, !i)+ci
�K(x, !i)

�y
+dK(x, '),

d�0, satisfy

& f&g*&v&<& f&g*&.

Then for each * # [0, 1]

& f&g*&*v&�& f&g*&&*c,

where c=& f&g*&&& f&g*&v&.
For *>0, small, we set

g*(x)= :
n

i=1

(ai+*bi) K(x, !i+$i)+* dK(x, ')

where $i=*ci �(ai+*bi). Since ai>0, we have $it* for all i=1, ..., n; i.e.,
they have the same order as * a 0. Now

g*(x)&g*(x)

= :
n

i=1

(ai+*bi) K(x, !i+$i)+* dK(x, ')& :
n

i=1

ai K(x, !i)

= :
n

i=1

*bi K(x, !i)+ :
n

i=1

(ai+*bi)[K(x, !i+$i)&K(x, !i)]+* dK(x, ')

=* :
n

i=1

bi K(x, !i)+* :
n

i=1

ci _K(x, !i+$i)&K(x, !i)
$i &+* dK(x, ')

=*v(x)+o(*).
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Since g* is a best approximation to f from M� ,

& f&g*&�& f&g*&=& f&( g*+*v+o(*))&�& f&g*&*v&+o(*)

�& f&g*&&*c+o(*).

For *>0, small, *c&o(*)>0, and a contradiction ensues. K

We will need the following analogue of Lemmas 2.3 and 2.4. We present
this result without proof as it is a variant on these results. However, it does
need and use the previously assumed ``extended'' SCVD property of K.

Lemma 6.2. Let %1< } } } <%2n<%2n+1=%1+2?, and !1< } } } <!n<
!n+1=!1+2?. Assume that

K \ %1 , ..., %2n

!1 , !1 , ..., !n , !n+=0.

Then

(a) For all 'i # (!i , !i+1), i=1, ..., n,

_2(%, !) K \ %1 , ..., %2n

!1 , '1 , ..., !n , 'n+>0

for some _2(%, !) # [&1, 1].

(b) For every choice of `1< } } } <`2n<`1+2? satisfying %i�`i�
%i+1 , i=1, ..., 2n, [%1 , ..., %2n]{[`1 , ..., `2n],

_1(%, !) K \ `1 , ..., `2n

!1 , !1 , ..., !n , !n+>0

for some _1(%, !) # [&1, 1].

(c) _1(%, !) _2(%, !)=&=n =n+1 .

We can now state and prove the theorem concerning best approximation
from M� .

Theorem 6.3. Assume that K is as above, and f # C� "M� . There exists a
unique best approximation g* to f from M� . Either g*=0 or for some n�1,
g* has the form

g*(x)= :
n

i=1

ai K(x, !i),
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where the ai>0, i=1, ..., n, and !1< } } } <!n<!1+2?. g* is uniquely
characterized as follows.

(a) g*=0 if and only if there exists a % such that

f (%)=&=1 & f &.

(b) If n�1, then one of the following holds :

(b1) f&g* equioscillates on 2n+2 points,

(b2) there exist %1< } } } <%2n<%1+2? such that

K \ %1 , ..., %2n

!1 , !1 , ..., !n , !n+=0

and for some %$2n , %"2n satisfying %2n&1<%$2n�%2n�%"2n<%1+2? we have

(&1) i+1 =n_2(%, !)( f&g*)(%i)=& f&g*&, i=1, ..., 2n&1
(6.1)

&=n_2(%, !)( f&g*)(%$2n)=&=n_2(%, !)( f&g*)(%"2n)=& f&g*&.

Proof. We refer the reader to Lemmas 5.2�5.5 of Pinkus [6] for a proof
of the fact that any best approximation to f # C� "M� from M� is
necessarily of the form g*=0 or

g*(x)= :
n

i=1

ai K(x, !i),

where the ai>0, i=1, ..., n, and !1< } } } <!n<!1+2?. The necessity,
sufficiency, and uniqueness of these conditions in the case g*=0 is easily
checked and is left to the reader.

Sufficiency and Uniqueness. Assume that & f&g&�& f&g*& for some
g # M� of the form

g(x)=|
2?

0
K(x, y) d+( y)

for some + # B, +�0. Set

g*(x)= :
n

i=1

ai K(x, !i)=|
2?

0
K(x, y) d+*( y)

(i.e., d+*=�n
i=1 ai $!i

). Thus

Z� c(( f&g*)&( f&g))=Z� c( g&g*)�Sc(+&+*).
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From the form of +&+*, we know that Sc(+&+*)�2n. If (b1) holds, and
f&g* equioscillates on 2n+2 points, then

2n+2�Z� c(( f&g*)&( f&g))

and a contradiction ensues.
Assume that (b2) holds. Then

2n=Z� c( g&g*)=Sc(+&+*).

Now

( g&g*)(x)=|
2?

0
K(x, y) d(+&+*)( y)= :

2n

i=1

ci ui (x),

where u2i&1(x)=K(x, !i), i=1, ..., n, and

u2i (x)=|
!i+1&

!i+
K(x, y) d+( y), i=1, ..., n,

Note that c2i=1, i=1, ..., n. Since Sc(+&+*)=2n, none of the ui (u2i)
vanish identically, and the [ui]2n

i=1 are a QT-system. From (6.1) we have

(&1) i+1 =n_2(%, $)( g&g*)(%i)� 0, i=1, ..., 2n&1
(6.2)

&=n _2(%, !)( g&g*)(%$2n)�0, &=n_2(%, !)( g&g*)(%"2n)�0.

Since the [ui]2n
i=1 are a QT-system, we also have

&=n_2(%, !)( g&g*)(%2n)�0.

Therefore

(&1)i+1 =n_2(%, !)( g&g*)(%i)�0, i=1, ..., 2n. (6.3)

Now

U \ 1, ..., 2n
%1 , ..., %2n+=|

!2&

!1+
} } } |

(!1+2?)&

!n+
K \ %1 , ..., %2n

!1 , '1 , ..., !n , 'n+ d+('n) } } } d+('1)

and thus

_2(%, !) U \ 1, ..., 2n
%1 , ..., %2n+>0.
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As such ( g&g*)(%i){0 for some i # [1, ..., 2n]. Solving for c2n=1 in the
equations (6.3) we obtain

1=c2n=
:
2n

k=1

( g&g*)(%k)(&1)k U \ 1, ..., 2n&1
%1 , ..., %� k , ..., %2n+

U \ 1, ..., 2n
%1 , ..., %2n+

.

A calculation similar to that done above shows that

sgn U \ 1, ..., 2n&1
%1 , ..., %� k , ..., %2n+==n

for all k=1, ..., 2n. The right-hand side of the above equation therefore has sign
&1. This is a contradiction and proves the sufficiency and the uniqueness.

Necessity. From Proposition 6.1, the zero function is a best approxima-
tion to f&g* from

A={ :
n

i=1

bi K(x, !i)+ci
�K(x, !i)

�y
+dK(x, ') : bi , ci # R, i=1, ..., n, d�0= .

This immediately implies that the zero function is a best approximation
to f&g* from the QT-space

U2n=span {K( } , !1),
�K( } , !1)

�y
, ..., K( } , !n),

�K( } , !n)
�y = .

Thus either (b1) holds (i.e., at least 2n+2 points of equioscillation) or we
have exactly 2n points of equioscillation as in the statement of Theorem 2.2.
The proof of the explicit orientation of the sign of the equioscillation as
stated in (b2) follows the proof of the analogous result in Theorem 3.2. K

Recall that

Qn={ :
n

i=1

ai K(x, !i) : ai�0= .

We now prove the analogue of Proposition 5.1 for Qn .

Proposition 6.4. Let f # C� and assume that the best approximation to f
from M� is not in Qn . If g* is a best approximation to f from Qn then

g*(x)= :
n

i=1

ai K(x, !i)
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for some ai>0, i=1, ..., n, and !1< } } } <!n<!1+2?, i.e., g* # int Qn , and
there exist %1< } } } <%2n<%1+2? such that

K \ %1 , ..., %2n

!1 , !1 , ..., !n , !n+=0

and for some %$2n , %"2n satisfying %2n&1<%$2n�%2n�%"2n<%1+2? we have

(&1) i =n_2(%, !)( f&g*)(%i)=& f&g*&, i=1, ..., 2n&1

=n_2(%, !)( f&g*)(%$2n)==n_2(%, !)( f&g*)(%"2n)=& f&g*&.

Proof. The proof is an immediate consequence of Proposition 6.1, and
the method of proof in Theorem 6.3. If

g*(x)= :
k

i=1

ai K(x, !i)

with k<n, then Proposition 6.1 holds since the perturbed g* # Qk+1�Qn .
We then apply the method of proof of necessity in Theorem 6.3 to prove
that g* is a best approximation to f from M� . From this contradiction we
obtain k=n.

We now apply the proof of Proposition 6.1 where we set d=0. In this
case g* # Qn , so the perturbation is admissible. It follows that the zero func-
tion is a best approximation to f&g* from the 2n-dimensional QT-space

U2n=span {K( } , !1),
�K( } , !1)

�y
, ..., K( } , !n),

�K( } , !n)
�y = .

From Theorems 2.2 and 6.3, and since g* is not a best approximation to
f from M� , we see that the desired property must hold. K

As in the case of Proposition 5.1 these necessary conditions are not, in
general, sufficient. In addition, the best approximation from Qn is not
necessarily unique. We mention that for K(x, y)=k(x&y) satisfying the
``extended'' SCVD properties, there exists a non-zero constanct c such that

c :
2m

i=1

k \x&
i?
m+

is a best approximation to f (x)=1 from Q2m . But then any translate of this
function is also a best approximation, and so there is no uniqueness.
Paralleling the analysis in Section 5, one can use this example to construct
an f # C� for which the necessary conditions of Proposition 6.4 are not
sufficient.
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The analogue of Theorem 4.1 for

Qn(!)={ :
n

i=1

ai K(x, !i) # Qn : !1=!= .

is the following result.

Proposition 6.5. Assume that the unique best approximation to f # C�
from M� is not in Qn(!). Then there exists a unique best approximation g+

to f from Qn(!). g+ has the form

g+(x)= :
n

i=1

ai K(x, !i),

where ai>0, i=1, ..., n, and !=!1< } } } <!n<!1+2?, i.e., g+ # int Qn(!).
It is uniquely characterized by the fact that f&g+ equioscillates on 2n points.

Proof. Let

g+(x)= :
n

i=1

ai K(x, !i) # Qn(!)

and assume that f&g+ equioscillates on 2n points. Let g{g+,

g(x)= :
n

i=1

bi K(x, 'i) # Qn(!).

If

& f&g&�& f&g+&,

then

2n�Z� c(( f&g+)&( f&g))=Z� c( g&g+).

Now

( g&g+)(x)= :
m

i=1

ci K(x, `i),

where m�2n&1. (Do not double count the !1 .) As such g&g+ is con-
tained in a T-space of dimension 2n&1, but has at least 2n zeros, with
nonnodal zeros being counted twice. This is a contradiction. Thus g+ is the
unique best approximation to f from Qn(!).
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Now assume that g+ is a best approximation to f from Qn(!). To prove
that g+ satisfies the desired conditions, we apply the method used in the
proof of Theorem 4.1.

If g+ # int Qn(!), then the zero function is necessarily a best approxima-
tion to f&g+ from

span {K( } , !1), K( } , !2),
�K( } , !2)

�y
, ..., K( } , !n),

�K( } , !n)
�y = ,

which is a (2n&1)-dimensional T-space. Hence f&g+ exhibits 2n points of
equioscillation.

Assume that g+ � int Qn(!). Thus

g+(x)= :
k

i=1

ai K(x, 'i),

where ai>0, i=1, ..., k, '1< } } } <'k<'1+2?, and k<n. We consider
three cases, paralleling the first three cases of Proposition 4.3.

Case 1. ! � ['1 , ..., 'k].

It can be shown exactly as in the proof of Proposition 6.1 that the zero
function is a best approximation to f&g+ from

A={ :
k

i=1

bi K(x, 'i)+ci
�K(x, 'i)

�y
+dK(x, !) : bi , ci # R, i=1, ..., k, d�0= .

The argument found in the proof of Theorem 6.3 shows that g+ is a best
approximation to f from M� , which is a contradiction.

Case 2. ! # ['1 , ..., 'k], k�n&2.

Suppose that !='1 . We first claim that the zero function is a best
approximation to f&g+ from

A={ :
k

i=1

bi K(x, 'i)+ci
�K(x, 'i)

�y
+dK(x, `) : bi , ci # R, i=1, ..., k, d�0= ,

for any ` � ['1 , ..., 'k]. This fact can be shown in the same way as in the
proof of Proposition 6.1.

Again, the same analysis as in the proof of Theorem 6.3 shows that g+

is a best approximation to f from M� , which is a contradiction.

Case 3. ! # ['1 , ..., 'k], k=n&1.

We shall not give the details of this case, as it is lengthy. It entirely
parallels Case 3 of Proposition 4.3, and the above ideas. K
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We end this paper with a final result concerning the g+.

Proposition 6.6. Assume that the best approximation to f # C� from M�

is not in Qn+1(!). Let g+
n and g+

n+1 denote the unique best approximations
to f from Qn(!) and Qn+1(!), respectively. If g+

n has the form

g+
n (x)= :

n

i=1

ai K(x, !i),

where ai>0, i=1, ..., n, and !=!1< } } } <!n<!1+2?, while g+
n+1 has the

form

g+
n+1(x)= :

n+1

i=1

bi K(x, 'i),

where bi>0, i=1, ..., n+1, and !='1< } } } <'n+1<'1+2?, then

'i<!i<'i+1 , i=2, ..., n.

Proof. We have

2n�Z� c(( f&g+
n )&( f&g+

n+1))=Z� c( g+
n+1&g+

n )

=Z� c \ :
n+1

i=1

bi K(x, 'i)& :
n

i=1

ai K(x, !i)+ .

Note that '1=!1=!. We have a non-trivial linear combination of 2n func-
tions, which form a QT-system, and which vanish at 2n distinct points
(since & f&g+

n &>& f&g+
n+1 &). The coefficients are uniquely determined,

up to multiplication by a constant (since their span contains a T-space of
dimension 2n&1).

Assume

:
2n

i=1

ci K(%j , `i)=0, j=1, ..., 2n,

for some %1< } } } %2n<%1+2? and `1< } } } `2n<`1+2? (and the ci not all
zero). The ci are proportional to

(&1) i K \%1 , ..., %� i , ..., %2n

`1 , ..., `2n&1 + , i=1, ..., 2n.
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As such the ci alternate in sign. Moreover, the [ai] and [bi] are all
positive. Thus we must have a1>b1 , and

'i<!i<'i+1, i=2, ..., n. K
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